Unit 2: Waves and Electricity - Mark scheme

Question	Answer	Mark
number		
1	C	1
2	С	1
3	В	1
4	D	1
5	D	1
6	Α	1
7	С	1
8	С	1
9	С	1
10	В	1

Question number	Answer	Mark
11(a)	Wavelength is the distance between two adjacent points that are in phase (1)	1
11(b)	• Use of $v = s/t$ (1)	3
	• Calculate distance to aircraft when the return time is 0.75 μ s (225 m) Or Calculate time for pulse to return when distance to aircraft is 60 km (2.3 × 10 ⁻⁴ s) Or Calculate total distance travelled by pulse when the return time is 1.5 μ s (225 m) and compare to 60 km Or Calculate time for pulse to return when distance travelled is 60 km (2.0 × 10 ⁻⁴ s) and compare to 0.75 μ s (1)	
	 Appropriate comment on suitability, e.g. detectable distance less than distance required, so suitable Or pulse shorter than time required to travel the distance, so suitable (Third mark is awarded only if second mark is awarded) (1) Example of calculation s = 3× 10⁸ m s⁻¹ × 1.5 × 10⁻⁶ s s = 450 m One way = 225 m Or t = 60000 m/3 × 10⁸ m s⁻¹ t = 2.0 × 10⁻⁴ s 	

Question number	Answer	Mark
11(c)	• Use of $I = \frac{P}{A}$ (1) • $P = 2.1 \text{ kW}$ (1) Example of calculation $P = 0.16 \text{kWm}^{-2} \times 13.2 \text{m}^{2}$	2
	Total for Question 11	6

Question	Answer		Mark
number			
12	This question assesses a student's ability to show a structured answer with linkages and fully-sustained Marks are awarded for indicative content and for h structured and shows lines of reasoning.The following table shows how the marks should b content.Number of indicative marking pointsNumber of marks awarded for indicative seen in answer645-433-221100	coherent and logically l reasoning. ow the answer is e awarded for indicative	6
	The following table shows how the marks should b lines of reasoning.	e awarded for structure and	
		Number of marks awarded for structure of answer and sustained line of reasoning	
	Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout	2	
	Answer is partially structured with some linkages and lines of reasoning	1	
	Answer has no linkages between points and is unstructured	0	
	 Total marks awarded is the sum of marks for indication for structure and lines of reasoning Indicative content (the atoms) of gases in the atmosphere contain electrons absorb photons from the sunlight electron moves to higher energy level the energy levels (of electrons) are discrete Or only certain energy levels are possible The energy of the photon must be equal to the Or hf = E2 - E1 	ative content and the marks	
	• There are only a limited number of energy dif number of black lines	ferences and only a corresponding	
	Total for Question 12		6

Question	Answer	Mark
number		1
13(a)	• A wave on which there are points that always have maximum displacement and others that always have zero displacement	1
	Or A wave on which there are points that are nodes and antinodes (1)	
13(b)(i)	• Quarter of a wavelength in length of air/pipe (1)	3
	• Use of $v = f\lambda$ (1)	
	• Comparison with $y = mx$ (1)	
	Example of calculation	
	$v = f \times 4l$	
	$f = \frac{v}{4} \times \frac{1}{l}$	
13(b)(ii)	• Determines gradient of graph (1)	2
	• $v = 330 \text{ (m s}^{-1})$ (1)	
	Example of calculation	
	$500s^{-1}$	
	Gradient = $\frac{1}{6m^{-1}}$ = 83.3 m s ⁻¹	
	$v = 4 \times 83.3 = 330 \text{ m s}^{-1}$	
13(b)(iii)	• Use of $v = f\lambda$ to determine λ (1)	3
	• Second standing wave: length = $\frac{3}{4}$ wavelength (1)	
	• Corresponds to $1/l = 1.7 \text{ (m}^{-1}$) as given on the graph so yes produced audible sound (1)	
	Example of calculation $330 = 415\lambda$	
	$\lambda = 0.795 \mathrm{m}$	
	$l = \frac{3}{4} \times 0.795$	
	l = 0.6 m	
	$\frac{1}{l} = 1.7 \mathrm{m}^{-1}$	
	Total for Question 13	9

Question	Answer	Mark
number		
14(a)	• Light (photons) transfers energy to electrons (1)	2
	• Greater number of conduction electrons so less resistance (1)	
14(b)(i)	• Amount of energy supplied (by the cell) per unit charge (1)	1
14(b)(ii)	• Use of $V = IR$ to calculate current (1)	3
	• Subtraction of p.d. from e.m.f. (1)	
	• $r = 6500 \Omega$ (1)	
	Example of calculation	
	$I = \frac{0.47}{-7.7 \times 10^{-5}}$	
	$1 - \frac{1}{6100} - 7.7 \times 10^{-10}$ A	
	$0.97 - 0.47 = (500 \Omega)$	
	$r = \frac{1}{7.7 \times 10^{-5}} - 6500 \Omega$	
14(b)(iii)	• Use of $P = VI$	2
	$\mathbf{Or} \ P = V^2 / R \tag{1}$	
	• $P = 3.6 \times 10^{-5} \text{W}$ (1)	
	Example of calculation	
	$P = 7.7 \times 10^{-5} \mathrm{A} \times 0.47 \mathrm{V} = 3.6 \times 10^{-5} \mathrm{W}$	
	Total for Question 14	8

Question	Answer		Mark
number			
15(a)(i)	A minimum is produced	(1)	2
	• Waves arrive 180° out of phase	(1)	
15(a)(ii)	• If this path difference = half a wavelength then a maximum would occur, as the overall path difference = one wavelength	(1)	2
	• So the light from the planet produces a maximum and the light from the star produces a minimum	(1)	
15(b)	• IR radiation has a longer wavelength than visible light In a laboratory the setup can be made to have a path difference that matches half the wavelength of IR used	(1)	2
	Or the actual path difference with visible light would be extremely small	(1)	
	Total for Question 15		6

Question	Answer		Mark
number			
16(a)	• Uses graph to find $\rho = 240 \text{ Wm}$	(1)	3
	• Use of $R = \frac{\rho l}{4}$	(1)	
	• $R = 21 \text{ k}\Omega$	(1)	
		(1)	
	Example of calculation:		
	$R = \frac{240 \text{Wm} \times 5.0 \times 10^{-2} \text{ m}}{5.8 \times 10^{-4} \text{ m}^2} = 20.7 \text{ k}\Omega$		
16(b)(i)	• Use of $I = V/R$	(1)	2
	• Output p.d. = 0.70 V	(1)	
	Example of calculation:		
	$\frac{1}{21}$ $\frac{21}{25-0.70}$ V		
	$v = \frac{1}{21+129} \times 5 = 0.70 \text{ v}$		
1((1)(")			4
16(b)(II)	Either	(1)	4
	• As soil dries P increases (above 21k)	(1) (1)	
	• As solidities then d becomes greater than 0.7 V	(1)	
	 Incorrect information as this system will switch off water as soil gets drier 	(1)	
	Or • As soil gets wetter resistivity decreases		
	 As soil gets weith resistivity decreases As soil has moisture more than 0.14 Research decreases (below 21 k) 	(1)	
	 As it gets wetter p d decreases below 0.7 V 	(1)	
	 Incorrect information as this system will switch on water as soil gets 	(1)	
	wetter	(1)	
16(c)	Negative coefficient: resistance decreases as temperature increases	(1)	3
	• Resistance decreases means output p.d. decreases	(1)	
	• So sensor could switch on coolers		
	Or open windows		
	Or turn off heaters	(1)	
	Total for Ouestion 16	(1)	12
			14

Question	Answer		Mark
number			
17(a)	Photons of ultraviolet light	(1)	3
	• Results in electrons being emitted from <u>surface</u> of zinc	(1)	
	• So electroscope loses charge and leaf falls	(1)	
17(b)	• Use of $\phi = hf$	(1)	3
	• Use of $c = f\lambda$	(1)	
	• $\lambda = 2.9 \times 10^{-7} \mathrm{m}$	(1)	
	Example of calculation		
	$4.3 \times 1.6 \times 10^{-19} \text{ J} = 6.63 \times 10^{-34} \text{ J} \text{ s} \times f$		
	$f = 1.04 \times 10^{15} \mathrm{Hz}$		
	$3.00 \times 10^8 \text{ m s}^{-1} = 1.04 \times 10^{15} \text{ Hz} \times \lambda$		
	$\lambda = 2.9 \times 10^{-7} \mathrm{m}$		
17(c)	Wave energy depends on intensity	(1)	3
	• Energy is spread over the whole wave	(1)	
	• The wave model suggests that if exposed for long enough electrons would	(4)	
	eventually be released but this does not happen.	(1)	
	Total for Question 17		9

Question number	Answer	Mark
18(a)		2
	• Use of $n = \frac{c}{v}$ (1)	
	• $v = 1.97 \times 10^8 \mathrm{m \ s^{-1}}$ (1)	
	Example of calculation	
	$1.52 = \frac{5.00 \times 10}{v}$ v = 1.97 × 10 ⁸ m s ⁻¹	
10(1)		
18(b)	 At the first surface the beam refracts towards the normal At the second surface some of the beam is incident at an angle greater 	4
	than $c - this light internally reflects$ (1)	
	• Some of the light is less than c this refracts out of the prism (1)	
19(a)(i)	• At the bottom surface the light refracts out of the prism (1)	2
10(0)(1)	• Use of $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (1) • $C = 58.8^{\circ}$ (1)	2
	Example of calculation	
	$\frac{1.52 \times \sin C = 1.30 \times \sin 90^{\circ}}{C = 58.8^{\circ}}$	
18(c)(ii)	 The beam has a larger angle of deviation when it is refracted into the air (1) than when it is refracted into the fruit juice (1) Very small proportion of beam reflecting at second surface (1) Some refraction shown on leaving bottom surface 	3
	Example of diagram	
	Source of light	

Question	Answer	Mark
number		
18(c)(iii)	• If refractive index greater then critical angle greater (1)	3
	• So less of beam reflected at second surface (1)	
	• Hence the illumination of the scale is over a shorter length (1)	
	(MP3 dependent on MP2)	
	Total for Question 18	14